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The theory of plasma oscillations points up the unique role played 
by resonance particles (those which satisfy the condition w k - kv = 
= nwH; n = 0, 1, 2 . . . . .  where ~k and k are the frequency and wave 
vector of the oscillation, v is the particle velocity, and o g  = eB / 
/ me), which, by exchanging energy with the waves, strengthen or 

weaken them. The important role of these particles in the damping of 
pIasma waves is readily apparent from the fact that y, the attenuation 
constant of the waves, in a rarefied plasma is proportional to the de- 
rivative of the distribution function of the resonance particles (see, for 
example, [1] ). 

According to the linear theory, an infinitely small perturbation 
which is created in the plasma will gradualIy damp out, and the system 
will return to the thermodynamic equilibrium state within a time of 
order 1/y. The quasi-linear theory (see [1]) indicates the existence of 
isolated states which can be attained by an unstable plasma as the re- 
sult of a perturbation growing in it. These states are characterized by 
the fact that the distribution function if is constant in some regions of 
phase space (a "plateau" appears in the function ]) .  This latter corre- 
sponds, according to the preceding comments, to the cessation of the 
oscillation damping. Such a state could be observed in a eollisionless 
plasma in the absence of a magnetic field. Collisions between the par- 

tieles tend to destroy the "plateauY When the collisions are taken into 
account, the distribution function approaches the Maxweilian form, 
and stationary absorption of the oscillations is established. 

In the present work we investigate the infiuence of a weak magnet- 
ic field on the damping condition of Langmuir electron oscillations. 
It is found that the magnetic field prevents the formation of the "pla- 
teau" in the distribution function, so that stationary absorption can be 
established in the absence of collisions. 

Thus the action of a magnetic field is in some sense similar to 
the effect of including collisions. If in the latter case the damping 
constant depends on the collision frequency, it is determined in the 
present case by the Larmor frequency of the electrons. 

Let us assume that at the time t = 0, a one-dimensional spectrum 
of Langmuix electron oscillations is excited in the plasma. The oscil- 
lations are created in the interval (k 0, k o + Ak0) of wave vector space, 
where Ak 0 << k 0. We shall assume that the wavelength is much smaller 
than the Larmor radius of the electrons in the resonance region: 

t l k ~ o } o / k o  H, k o < k < k o - [ - - A k o .  (1) 

Here w H is the Larmor electron frequency, and w o is the plasma 
frequency. 

We shall examine the problem of oscillation damping in the qua- 
si-linear approximation. If the direction of the wave vectors (k il 0~r 
is perpendicular to the direction of the magnetic field (H II Oz), then 
the quasi-linear equation for the averaged distribution function will 
have the simplest possible form: 

O, = D ( t) oO~]x2 __ oj.. ( Vy o~]yx __ vx ~ ) ' Ot 

e ~ [ E~ko (t)[ coo 
D( t ) - -2m,  z v ~ '  Vo-- k " (2) 

Here EZk0 is the spectral density of the oscillation energy, e is the 
electron charge, m is the electron mass, and v i is the i- th component 
of the electron veincity. 

In the following we shall confine ourselves to the case of a suffi- 
cientiy narrow packet of oscillations (that is, in the region where the 
quasi-linear theory is applicable): 

o0Ak0 
Avvo . ~  1, Avo k0 (k0 + Ako) (3) /)~2 

and we shall assume that the characteristic diffusion time is much 
smaller than the t ime of electron passage through the resonance region, 
in that part of velocity space where the maximum absorption of oscil- 
lations takes place: 

hvo 2 I Avo - ~ - ~ q - ~ ,  gaa-X~o,~< ~j~<~ 

or 

OlHAVov r 
= O ', ,~ 1.  (4) 

In the inequality (4) we can set D ~ D(0), since we are interested 
only in those oscillations whose amplitudes vary insignificantly during 

-I. -i.I/2^ a time of order w H (v0) z~v0. 
When the conditions (3) and (4) are satisfied, as will be shown be- 

low, only the derivative of the distribution function by v x is strongly 
distorted in the resonance region, while the variation of the distribu- 
tion function itself can be neglected. Accordingly, a quasi-stationary 
state is established in the resonance region during the time required 
for an electron to pass through it. Thus the problem is reduced to the 
solution of the stationary equation 

02[ ( o/ _ ~.~)o/ (5) Do O~j = ~ ~vv 

with the boundary conditions 

D ~  %=~,~ = --on% [%--/  

Of vx=v"+nv* ~v~ =0 ,  (% > 0), 

~- O~ 

o/ 
Do -~x vx=vo+~,vo = --  AHVu [% - -  / lvx=vo=~v"] (z,V < 0), 

% = ~ e x p  \ - -  ~ / 

Here ~o 0 is the unperturbed velocity distribution function of the elec- 
trons, and n is the density. We shall seek a solution of Eq. (5) in series 
form: 

o H 

Using the boundary conditions on Eq. (5) and neglecting terms of 
second order in small quantities, we have 

1= t + A~0v0/vr2 (p0(v0)+ 

o H + ~ - 0  [@ x ( v ~  Av~ 0cP~ 

t 
{% (vo + Avo) + ] = I - -  AVoP 0 / Vr2 

oH r/ v0 ~ v g \ 0 %  (%)q~]~ 
+ -~: L/~--~--- T )  ~ - + ,  (~ <o). (7) 

(The additive constant C(Vy) can be calculated from the second 
approximation. For that purpose, it is found that an inequality stronger 
than (4) is required to make perturbation theory applicable; however, 
inequalities (3) and (4) are quite sufficient to make Eq. (8) valid. This 
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can be verified by subjecting Eq. (2) to a Laplace transformation on 
Vy. ) 

We note that the zeroth approximation to the distribution function 
differs, in the resonance region, from the average value of the dis- 
tribution function in the absence of a magnetic field. This is not sur- 
prising, because the foregoing values were calculated with the use of 
the same limit transitions (t tendLrtg to infinity and co H to zero) but in 
the reverse order. 

Ignoring terms of order v0V'~TAVQ, we can write the expression for 
the derivative of the distribution function by v x as follows: 

O/ ~ v  u (re § avo - -vA Vo 
Ov z -- DovT~ ~o (v~> 0), 

O/ o~v v (vo - -  v~) ~o 
Ov'--~ --  Do%Z q~o (% < 0). (8) 

Averaging over Vy, we find the damping constant 

z ~  2D~ r 0 = - X - - ~ - g - o /  v - ~ r  o. (9) 

Here Y0 is the constant according to the linear theory with no mag- 
netic field taken into account, s is the energy density of the oscilla- 
tions, and nkT is the kinetic energy density of the plasma. 

In conclusion, the authors wish to thank R. Z. Sagdeev for bringing 
this problem to their attention. 
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